
Summarizing Clinical Notes using LLMs for ICU
Bounceback and Length-of-Stay Prediction

Akash Choudhuri
Dept of Computer Science,

University of Iowa.
akash-choudhuri@uiowa.edu

Philip Polgreen
Dept of Internal Medicine,

University of Iowa.
philip-polgreen@uiowa.edu

Alberto Segre
Dept of Computer Science,

University of Iowa.
alberto-segre@uiowa.edu

Bijaya Adhikari
Dept of Computer Science,

University of Iowa.
bijaya-adhikari@uiowa.edu

Abstract—Recent advances in the Large Language Models
(LLMs) provide a promising avenue for retrieving relevant
information from clinical notes for accurate risk estimation of
adverse patient outcomes. In this empirical study, we quantify
the gain in predictive performance obtained by prompting LLMs
to study the clinical notes and summarize potential risks for
downstream tasks. Specifically, we prompt LLMs to generate a
summary of progress notes and state potential complications that
may arise. We then learn representations of the generated notes
in sequential order and estimate the risks of patients in the ICU
getting readmitted in ICU after discharge (ICU bouncebacks)
and predict the overall length of stay in the ICU. Our analysis
in the real-world MIMIC III dataset shows performance gains
of 7.17% in terms of AUC-ROC and 14.16% in terms of AUPRC
for the ICU bounceback task and 2.84% in terms of F-1 score
and 7.12% in terms of AUPRC for the ICU LOS Prediction task.
This demonstrates that the LLM-infused models outperform the
approaches that only directly rely on clinical notes and other
EHR data.

Index Terms—Electronic Health Records, Health Informatics,
Large Language Model.

I. INTRODUCTION

Estimating the risk of an inpatient’s condition worsening is
crucial in healthcare facilities, as the identification of high-
risk patients aids in strategic hospital decision-making [1],
and the application of proactive preventive measures enables
early intervention. The fine-grained information on patients’
trajectories embedded within Electronic Healthcare Records
(EHRs) makes patient risk estimation feasible. Recent ad-
vances in machine learning have brought significant strides in
EHR analytics; specific examples include extraction of patient
risk factors [2]–[4], leveraging the underlying data storage
structures of EHRs for representation learning [5]–[8], and
the inference of interactions between healthcare entities [9],
[10]. This line of research has produced scalable and highly
accurate frameworks for patient risk estimation in healthcare
facilities [11].

Despite advances in machine learning, most prior works in
this space fail to effectively capture the rich information stored
in unstructured free-text clinical notes. Clinical notes contain
subtle spectra of individual patient risk factors that reflect the
direct perspective of physicians and healthcare workers and
are not necessarily captured by tabular records. There has
been some recent interest [5], [10] in mining clinical notes

along with other data sources for downstream predictive tasks.
However, these approaches learn representations only from
the text present in the clinical notes and fail to capture the
knowledge that exists outside clinical nodes, for e.g. those
in PubMed [12] and public forums like reddit [13]. The
absence of this information poses a detrimental effect on
effective knowledge mining. Although additional guidance can
be externally provided via knowledge graphs (KGs) [14], [15],
such a procedure requires caution in aligning the concepts
to their corresponding meaning in the given EHR data as
concepts and their meanings evolve over time [16].

Recent advances in Large Language Models (LLMs) in the
domain of healthcare analytics [17]–[19] provide a promising
way to resolve these issues, as they contain billions of param-
eters and have been pre-trained on massive corpora including
text data from PubMed and public forums, thus inherently
capturing a significant amount of external knowledge. Recent
works like [20], [21] use LLMs on EHRs, but only work
on hospital codes and fail to fully utilize the knowledge of
LLMs and clinical notes simultaneously. However, LLMs en-
able retrieving the most meaningful information from clinical
notes. To address this gap, our study empirically quantifies
the degree of enhancement in the information obtained from
clinical notes with LLMs to improve patient risk estimation.
We hypothesize that the information obtained from LLMs
fused with clinical notes provides more information than the
clinical notes themselves, and we empirically show that the
text generated by LLMs provides more evident risk factors
that can aid in decision-making and allocation of resources
in healthcare facilities. The contributions of our study are as
follows:

• We quantitatively evaluate the integration of LLMs to
clinical notes to enhance the information provided by
clinical notes by providing potential medical complica-
tions that may occur in free text.

• We propose an end-to-end framework that integrates both
tabular features and the sequential progression of risk in
the form of textual data generated by LLMs for accurate
patient risk estimation.

• We perform experiments on real-world and open-source
EHR dataset MIMIC-III on two applications: ICU



Bounceback Prediction and ICU Length of Stay Predic-
tion tasks.

II. METHOD

In this section, we will provide an overview of our method-
ology. The detailed overview of our overall framework is
shown in Figure 1. Our methodology mainly consists of
four steps, namely data extraction, large language model
information extraction, temporal embedding of the generated
summaries, and final prediction. We will first formulate the
problem and then describe each component in detail.

A. Problem Formulation

We are given a hospital operations database with events
derived from EHRs [9], [10], [22], [23] and Admission Dis-
charge Transfer (ADT) logs [9], [10], [24], [25] from an
inpatient healthcare facility. The data contains time-stamped
information about patient movement throughout the hospital
as well as time-stamped records of procedures, laboratory
tests, and prescribed medications. In addition to the items
mentioned earlier, the data also contains time-stamped records
of admission to critical-care units as well as unstructured
clinical notes. This data can be used to extract information
about each patient visit. The set of patient visits is denoted by
V . Similarly, the corresponding patient activity data extracted
from EHR and ADT databases can be denoted by Xi, where
i ∈ V . Note that Xi also contains clinical note data in addition
to the other tabular data.

In addition to patient activity data, we are also given
corresponding task labels yi corresponding to each visit i ∈ V .
Each task label indicates the eventual outcome that occurred
after the patient’s visit. Examples include binary mortality
labels, where positive labels could indicate the patient’s death
after the current visit, and negative labels for otherwise. We
can now formally define our problem.

Given: Patient visit activity data {Xi}i∈V for a set of patient
visits V and corresponding labels {yi}i∈V
Infer: A mapping function m(.) which maps each visit data
Xi to corresponding label yi, where i ∈ V .
Such that: a loss function

∑
i∈V L(Xi, yi) is minimized.

In the problem above, L is a standard classification loss
function such as the cross-entropy loss. We solve this problem
as a supervised classification problem, where each sample
corresponds to a patient visit.

B. Data Extraction

The data extraction module aims to leverage the relational
structure of EHR data to extract relevant information required
as inputs for the latter components of the framework. This step
is used to extract both the visit-level as well as the unstructured
clinical progress notes in the chronological order of entry into
the system.

To extract the visit-level information, the database is queried
to obtain the visit records and associated information relating
to the corresponding visit (medications prescribed, procedures

performed, possible diagnoses, etc.). This associated informa-
tion will then be used to compute different comorbidity scores
which are used as risk factors for patient health risk. On the
other hand, demographic information like age, gender, race, etc
is also extracted. This creates the tabular visit-level features
di for every visit i ∈ V from Xi.

For unstructured clinical notes present in Xi, we make sure
to exclude discharge summaries from our data as they do
not provide detailed information about the progress of the
patient’s health status. Moreover, some discharge summaries
could also mention the overall length of stay or the chances of
readmission (our applications, which are described in Section
IV.C.) and could thus lead to information leakage in our
predictive task. So, for every patient visit i ∈ V , spanning from
timestamp T0 to TT we chronologically extract the progress
notes denoted by {ni

t}
TT−T0
t=0 that dynamically document each

patient’s health status. The exact details of extracting the
progress notes for our experiments are given in Section IV.A.

C. Large Language Model Information Extraction

Generative language models (GLMs) are advanced natural
language processing models capable of producing text that
is coherent and contextually relevant. Through extensive pre-
training on large amounts of text data and fine-tuning based
on human instructions, they can generate text outputs that
closely resemble human-written content. LLMs model the
probability of a sentence (that is, a sequence of word tokens)
s = (q1, q2, . . . , qn) as p(s) =

∏n
i=1 p(qi | q<i), where qi

denotes the i-th token of the sentence s and q<i denotes the
partial word token sequence before the i-th step. Moreover,
due to their training in wide corpora that encompasses multiple
sources of information, LLMs have recently shown increased
reasoning abilities in the medical domain [26]–[28] and have
been deployed in various applications in conjunction with
traditional methods [29], [30]. LLMs have exhibited excep-
tional performance in natural language understanding tasks,
including named entity recognition (NER).

The superiority of LLMs to cater to a wide variety of tasks
motivated us to explore the reasoning capabilities of LLMs to
summarize clinical notes by identifying the risk factors from
free-text clinical progress notes and also identify potential
complications that can arise based on the information given
in the note. However, to allow the LLM to have reasonable
background context to perform the given task effectively,
we design a prompt using an appropriate engineered prompt
designed with the help of FlowGPT [31]. The prompt structure
with its component is given in Figure 2. This given prompt
followed by each progress note ni

t is provided as inputs for
the LLM and it summarizes each clinical note and also states
the list of potential complications. An example of the clinical
note and its corresponding output is shown in Figure 3. We
did not use the LLM to directly predict the outcome due to
the known issue of low accuracy in the point predictions of
LLMs [32]. However, our approach leverages the step-by-step
reasoning power of LLMs and the chronological aggregation
of the LLM summaries reduces the overdependence on just



Figure 1: Proposed framework (best viewed in color). The steps denoted by red arrows are performed separately than the steps denoted by
black arrows. Data Extraction constructs visit-level data and progress notes for each individual visit from the Hospital Operations Database.
This data is then used to construct the visit-level features. The progress notes are sequentially inputted to the frozen LLM to generate
summaries. Frozen Clinical Longformer generates embeddings of the corresponding summaries and these embeddings are sequentially
passed through the GRU to generate the overall text embedding for the visit. This embedding is concatenated with the visit-level features
and passed through the FFN to get the predictions.

Figure 2: Prompt format (best viewed in color). The prompt first
sets the context for the LLM to adhere to. This is followed by
engineering techniques to improve the predictive power of the LLM
followed by the description of the task. The next part of the prompt
prevents hallucinations/noisy outputs during the generation process
of the model.

one output of the LLM, which can mitigate hallucination and
other known issues of LLMs. Note that the parameters of the
LLM are frozen and we do not perform any additional fine-
tuning steps as we wanted to leverage the vast overall domain
knowledge of LLMs and did not want to direct the parameters
towards the task.

D. Temporal Embedding of the Generated Summaries

After the natural language summaries are generated by the
LLM, we perform the following pre-processing steps:

• Remove all special tokens like ‘\n’, ‘\r’ and ‘\t’.

• Remove all text and patterns that start with ‘[**’ and ends
with ‘**]’.

• Remove all occurrences of datetime in YYYY-MM-DD,
DD-MM-YYYY, MM-DD-YYYY, etc.

• Remove all numbers, consecutive spaces, stopwords, and
special characters.

• Convert all text to lowercase.
We then utilize the medical domain language model, Clinical-
Longformer [33] to obtain text embeddings from the gener-
ated summary texts. Pretrained on MIMIC-III clinical notes,
Clinical-Longformer is a medical-domain-enriched language
model designed to handle long clinical texts by extending
the maximum input sequence length from 512 (for BERT-
like LMs) to 4096 tokens. Note that the model parameters
are frozen here, as well as the LM parameters are already
aligned with the clinical note corpora. This provides us with
the embeddings of the LLM summaries denoted by {eit}

TT−T0
t=0 .

Thus,
eit = f(LLM(ni

t)), i ∈ V, t ∈ [T0, TT ] (1)

Here f(.) denotes the frozen Clinical-Longformer model. To
model the temporal characteristic of the LLM summaries for
every visit and to obtain a latent embedding encompassing the
overall representation of the summaries generated from the
progress notes, we pass the embeddings {eit}

TT−T0
t=0 defined

earlier through a GRU [34] given by:

hi = GRU({eit}
TT−T0
t=0 ), i ∈ V (2)

E. Final Prediction

For each visit i ∈ V , the latent summary embedding hi is
now concatenated with the tabular visit-level features di and
the resultant embedding is then passed through a Feed-Forward



Figure 3: LLM Summary (best viewed in color). Note the input clinical note given on top contains unstructured information. However, the
corresponding LLM generation summarizes the unstructured information. Additionally, the LLM also predicts potential medical complications
for the patient based on the above clinical note (sepsis, pneumonia, renal failure, thrombocytopenia, etc.), which can aid in assessing the
risk posed by the patient to aid downstream predictive tasks. Note, the LLM used here is LLAMA3.

Neural Network to obtain the prediction. Mathematically the
operations are given as follows:

zi = concat(hi, di) (3)

ŷi = g(zi) (4)

Where:
• zi is the concatenated embedding.
• ŷi is the prediction for visit i.
• g(·) denotes the Feed-Forward Neural Network.

We then minimize Lpred, the cross-entropy loss function that
computes the difference between ŷi and yi and back-propagate
the parameters of our overall framework. For binary classifi-
cation problems, Lpred is given as follows:

Lpred = − 1

N

N∑
i=1

[
yi log(ŷi) + (1− yi) log(1− ŷi)

]
(5)

For multi-class classification problems, Lpred is given as fol-
lows:

Lpred = − 1

N

N∑
i=1

C∑
c=1

yi,c log(ŷi,c) (6)

In these equations:

• N is the number of samples.
• C is the number of classes.
• yi is the true label for sample i.
• ŷi is the predicted probability for the true class of sample

i.
• yi,c is the binary indicator (0 or 1) if class label c is the

correct classification for sample i.
• ŷi,c is the predicted probability for class c for sample i.
During the joint training, the GRU(.) and the FFN g(.)‘s

parameters are updated via backpropagation. The model pa-
rameters of the other components like the LLM and f(.) are
frozen. The joint training continues until convergence of the
loss and the learned model parameters are used to evaluate the
model’s performance on the test data.

III. EXPERIMENTS

A. Dataset

We used the popularly used open-source MIMIC-III [35]
EHR dataset for our study. This is de-identified healthcare op-
erations data who were admitted to the critical care units of the
Beth Israel Deaconess Medical Center between 2001 and 2012.
The dataset contains data from heterogeneous sources, includ-
ing demographic information, International Classification of
Diseases codes (ICD-9), hourly vital signs, laboratory tests,



microbiological culture results, medication administrations,
and survival statistics. For our study, we only used information
about the patients who were admitted to the Intensive Care
Units (ICU) and stayed there for more than 2 days for each
admission to the ICU.

Similar to prior literature [36], [37], we extracted demo-
graphic and clinical features encapsulating each patient visit
in the ICU. The demographic features extracted were age and
gender, and the clinical features were Body Mass Index (BMI),
Glasgow Coma Score (GCS), maximum White Blood Cell
(WBC) count, maximum blood glucose value, etc.

In addition to all the tabular data, additional information
is available in unstructured and free-form clinical notes. In
the MIMIC-III dataset, 2,083,180 clinical notes are broadly
divided into 15 categories. Although the MIMIC-IV dataset
also exists at the moment [38], it only contains radiology notes
and discharge summaries. Thus, we do not use the MIMIC-
IV dataset due to the lack of fine-grained categorization of
clinical notes to encapsulate patient health progress over time.

To leverage information from the clinical domain provided
by physicians and monitor the sequential progress of patient
health, we only consider those clinical notes under the category
‘Physician’ and the subcategories ‘Physician Resident Progress
Note’ and ‘Physician Attending Progress Note’. In the dataset,
53,321 and 17,771 clinical notes were under the sub-categories
‘Physician Resident Progress Note’ and ‘Physician Attending
Progress Note’ respectively.

B. Models

To evaluate the benefit of utilizing information gathered
from LLMs, our experimental protocol involved the evaluation
of the performance of models BASE, NOTES, LLAMA3 [39],
MedLLAMA [40], LLAMA3-Meerkat [41]. More details are
presented in the Appendix.

C. Applications and Evaluation Metrics

We quantitatively evaluate the performance of the models
on 2 applications described below:

1) Application 1: ICU Bounceback Prediction: The first
application asks to utilize information from the patient’s
current ICU visit to predict whether a patient is at risk of
being transferred back to the ICU after discharge. The ICU
provides critical care for patients in severe conditions, and
a patient is only transferred there when constant monitoring
and intensive care are necessary. Identifying the high risk of
transfer back to the ICU early can help healthcare profession-
als provide better patient care. Additionally, since ICU beds
are limited, early prediction of potential ICU transfers can
assist hospital officials in resource allocation. Bouncebacks to
the ICU indicate rapid and sudden deterioration of a patient’s
health, necessitating a higher priority for hospital resources.

Similar to the MICU transfer prediction task in prior
works [9], [10], we frame the prediction of ICU bouncebacks
as a binary classification problem. The classifier’s input is the
embedding produced by the predictive model at the end of
the current visit, and the output is a label indicating whether

the patient will be readmitted to the ICU during the current
hospital stay. Positive instances (+) are built using actual ICU
bounceback events, while negative instances (-) are identified
by finding patients who have not been readmitted to the
ICU during the current hospital visit. It should be noted that
ICU bouncebacks are rare events, as indicated by the label
distribution shown in Table I.

Table I: Label Counts for ICU Bounceback Prediction Task

Class Count
Positive 2703
Negative 137

Total 2840

2) Application 2: ICU Length of Stay Prediction: The sec-
ond application we present is the prediction of the total length
of stay (LOS) for each patient visit in the ICU. Although
this problem can be posed as a regression problem [36], our
study presents it as a multi-class classification problem similar
to [37], with different classes representing different ICU stay
categories. LOS between 2-4 days was categorized as ‘low’,
between 4-7 was classified as ‘medium’ and 7 days and above
was categorized as ‘high’. The details of the label distribution
are shown in Table II.

Table II: Label Counts for ICU LOS Prediction Task

Class Count
Low (2-4 days) 1437

Medium (4-7 days) 674
High (7+ days) 729

Total 2840

3) Evaluation Metrics: Due to the label imbalance of the
bounceback prediction task with a label imbalance ratio of
about 1:20, accuracy is not a suitable metric to evaluate the
performance of the models in this study. Thus, we adopt the
Area under the Receiver Operating Curve (AUC-ROC) score
and the Area under the Precision-Recall Curve (AUPRC) as
the evaluation metrics of this task, similar to prior works
working with an imbalanced label ratio [9], [10]. On the other
hand, for the LOS prediction task, we use AUPRC and macro
F-1 score as the evaluation metrics due to the label imbalance.

D. Results

The results of our experiments are presented in Table III1.
1) Application1: ICU Bounceback Prediction: The high

label imbalance of the problem (mentioned before) makes
this task extremely challenging. This is quite evident in the
AUPRC metric which is significantly low for all the models.

In this experiment, we observed several important findings.
Firstly, we noticed a significant improvement in both the AUC-
ROC (5.74% on average) and the AUPRC (8.80% on average)
scores when using clinical notes (NOTES) compared to the
tabular feature data (BASE). This confirms our initial hypoth-
esis that clinical notes provide valuable additional information

1The LLM outputs are present in https://github.com/Soothysay/
LLM-Outputs.

https://github.com/Soothysay/LLM-Outputs
https://github.com/Soothysay/LLM-Outputs


Table III: Performance of Models on MIMIC-III Dataset averaged across 3 independent runs

Model ICU Bounceback Prediction ICU Length of Stay Prediction
AUC-ROC AUPRC Macro-F1 AUPRC

BASE 62.49 ± 0.16 9.54 ± 0.14 34.38 ± 0.58 42.11 ± 0.23
NOTES 66.08 ± 0.73 10.38 ± 0.42 41.08 ± 0.46 44.93 ± 0.73
LLAMA3 [39] 69.79 ± 0.51 11.74 ± 0.15 40.94 ± 0.59 48.13 ± 0.64
MedLLAMA [40] 66.17 ± 0.05 10.86 ± 0.83 41.76 ± 0.52 47.86 ± 0.03
LLAMA3-Meerkat [41] 70.82 ± 0.76 11.85 ± 0.39 42.25 ± 0.56 46.75 ± 0.26

for making better predictions. Secondly, we found that the use
of LLAMA3-generated summaries leads to better performance
compared to NOTES in terms of both AUPRC and AUC-ROC.
Thirdly, we observed that LLAMA3-Meerkat, a fine-tuned
version of LLAMA3, achieves an average gain of about 1.4%
in AUC-ROC over LLAMA3. This clearly demonstrates the
superiority in the performance of fine-tuned models over their
original versions. However, fine-tuning may not always be
beneficial, as indicated by the comparison between LLAMA3
and MedLLAMA. Here, there is a decrease in both the AUC-
ROC and AUPRC scores when moving from the original to the
fine-tuned model. Nonetheless, MedLLAMA still outperforms
NOTES in both performance metrics, thereby validating our
hypothesis that language model models (LLMs) provide an
additional source of valuable information. These gains in
performance are impressive since the resources are scarce in
ICUs, and hence this could have helped HCPs to better utilize
the limited resources and can lead to saving patients’ lives as
patients who have positive labels are critically ill and their
health condition can deteriorate any time.

2) Application 2: ICU Length of Stay Prediction: For this
predictive task, we first notice a similar trend to the results of
Application 1 where NOTES significantly outperforms BASE
in both Macro F-1 (19.48 % gain on average) and AUPRC
(6.69 % gain on average). However, we observe mixed results
when we compare NOTES to the other LLM models. We
notice that LLAMA3-Meerkat is the best-performing LLM
in terms of Macro-F-1 score, outperforming NOTES as well.
However, LLAMA3 and MedLLAMA cannot outperform
NOTES in terms of Macro F-1 score. On the other hand, eval-
uating the models on the AUPRC metric shows that LLAMA3
has 7.12%, MedLLama has 6.52%, and LLAMA3-Meerkat has
a 4.05% performance gain over NOTES. However, in terms
of the AUPRC metric, LLAMA3 is the best model. Also note
that although LLAMA was not explicitly pre-trained to cover
medical text, it performs competitively compared to the fine-
tuned variants for both the tasks.

E. Discussion: Analyzing Similarities in LLM Generations

Table IV: Jaccard Similarity Index for Medical Terms

LLM Jaccard Score
Notes:LLAMA3 0.1446

Notes:MedLLAMA 0.1226
Notes:LLAMA3-Meerkat 0.1543
LLAMA3:MedLLAMA 0.1977

LLAMA3:LLAMA3-Meerkat 0.2001
MedLLAMA:LLAMA3-Meerkat 0.2497

Due to the large volume of textual data present in the
form of clinical notes and their corresponding LLM-generated
summaries, it was impossible to individually analyze them
and validate their correctness. However, we conducted a case
study to compare the diversity of medical topics in the texts.
As LLMs generate future complications in addition to the
summary of the progress notes, it would not be fair to compare
the medical terms from individual clinical notes. So, we
concatenate all the progress notes appearing across each ICU
visit and then compare the medical terms.

We used the biomedical Named-Entity Recognition (NER)
pipeline from ScispaCy [42] to extract relevant medical terms
from the texts. The medical terms for each visit were compared
by computing the Jaccard Score, which is given as follows:

J(A,B) =
|A ∩B|
|A ∪B|

(7)

Here A and B are two different summaries generated from
the same ICU visit. The results of our experiment are given
in Table IV.

Results show that the LLM summaries had significant dif-
ferences in the medical terms generated. However, LLAMA-
3-Meerkat had the highest Jaccard score when compared to
notes. We hypothesize that this leads to the superior perfor-
mance of LLAMA-3-Meerkat in the downstream predictive
tasks in Table III. On the other hand, comparing the medical
terms in the LLM generated summaries shows higher Jaccard
scores, among which MedLLAMA and LLAMA-3-Meerkat
having the highest similarity in medical terms while the Jac-
card scores when compared to LLAMA3 being very similar.
This is because both MedLLAMA and LLAMA-3-Meerkat are
fine-tuned versions of LLAMA-3 for medical texts.

IV. RELATED WORK

Healthcare Analytics: Prior works for Healthcare Analytics
use patient mobility logs to solve inference problems, such
as outbreak detection [43], missing infection [44] and time-
series forecasting [45]. The role of the architectural layout
of the hospital is also explored [46]. Some works use het-
erogeneous co-evolving networks to learn patient embeddings
[9], [10], whereas MiME utilizes the multilevel structure
of EHR data [6]. [47] used CNN to represent abstract
medical concepts whereas eNRBM uses restricted Boltzmann
Machines [48]. [49]–[51] performs outcome-level patient risk
prediction across healthcare facilities. Some prior works also
leverage information from medical codes [7]–[9].



Large Language Models in Healthcare Analytics: The
superiority of the performance of Large Language Models
across a wide variety of tasks has led to their development
and integration in the domain of healthcare. [30] developed
GatorTron, a large clinical language model, to improve the
processing and interpretation of EHRs by being trained on
a massive dataset of over 90 billion words, including de-
identified clinical notes from UF Health, PubMed articles,
and Wikipedia. [52] investigated the potential of four large
language models (LLMs) – ChatGPT, Galactica, Perplexity,
and BioMedLM – to assist with personalized treatment de-
cisions in oncology. [53] introduces a novel prompt com-
posed of class-specific words to guide contrastive learning,
enhancing token representations and serving as effective metric
referents for distance-based inference on test instances. [54]
propose GAMedX, an innovative wrapping approach using
open-source LLMs to address these challenges. GAMedX aims
to provide a unified structure format for a named entity recog-
nition (NER) system, focusing on extracting multiple intercon-
nected concepts from medical transcripts. The methodology
involves loading and preprocessing data from two datasets:
medical transcripts and the Vaccine Adverse Event Reporting
System (VAERS). The process utilizes prompt crafting with a
Pydantic Schema, in-context learning with few-shot examples,
and leverages two specific open-source LLMs: Mistral 7B and
Gemma 7B. [55] introduces LLaVA-Med, a novel method for
creating a biomedical visual instruction-following model using
a data-centric paradigm. [56], on the other hand, develops
an LLM designed specifically for medical consultation. It
leverages a combination of data distilled from ChatGPT and
real-world data from doctors during its supervised fine-tuning
stage.

V. CONCLUSION

Our study demonstrates the benefit of using LLM-generated
summaries of clinical notes over two downstream tasks: ICU
bounceback and length-of-stay prediction. We found that the
inherent knowledge captured by LLMs during training al-
lows them to provide additional information about medical
complications based on the text of clinical notes. We also
compared the performance of two fine-tuned LLMs for the
two tasks and found that fine-tuning does not always translate
to improved performance. This is a promising initial result, as
it provides evidence of using LLMs to encode medical texts to
leverage additional information for improved risk estimation.
While we only focussed on the LLAMA3 family of LLMs,
the general prompt engineering techniques are general and
could be extended to other types of LLMs. A potential future
direction of our work is to integrate LLM-generated summaries
in multimodal frameworks.
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