Conformal Edge-Weight Prediction in Latent Space

Akash Choudhuri^[1], Yongjian Zhong^[1], Mehrdad Moharrami^[1], Christine Klymko^[2], Mark Heimann^[2], Jayaraman J Thiagarajan^[3], Bijaya Adhikari^[1]

^[1]University of Iowa, ^[2]Lawrence Livermore National Laboratory, ^[3]Apple Inc.

Motivation

- Problem Formulation
- Our Approach
- Experiments
- Conclusion

Graphs are Everywhere

Transportation Networks

Biological Networks

Collaboration Networks

Social Networks

Blockchain Networks

P2P Networks

Predictive Tasks on Graphs

• Biological Networks:

- Node Level: What is the function of a given protein?
- Edge Level: What is the strength of interaction between a pair of proteins?

Collaboration Networks:

- Node Level: What is the subfield of work of a researcher?
- Edge Level: How many publications are co-authored by 2 researchers?

https://string-db.org/cgi/help?sessionId=b3v9M4cmNN9X

https://www.sciencecollaborations.net/

Need for Uncertainty Quantification

NIVERSITY

Standard Approach for Uncertainty Quantification

Test Sample Model Point Prediction

 $+\epsilon$

 X_{n+1}

Prediction Band

$$X_{n+1} \longrightarrow \hat{y}_{n+1} \longrightarrow C(X_{n+1})$$

Node Level

- No statistical guarantees
- Many assumptions
- Prediction bands may not typically cover the true label (a.k.a. miscoverage)

Conformal Inference

• Assuming the test point X_{n+1} is **exchangeable** with the other points, the coverage guarantee with the true label y_{n+1} holds:

 $\mathbb{P}(y_{n+1} \in C_{1-\alpha}(X_{n+1})) \ge 1 - \alpha$

- Provides a statistical guarantee of coverage for the predicted bands
- This guarantee is:
 - Distribution free
 - Model agonistic

Need for Conformal Edge Weight Inference

- Prior works primarily on nodes
- [Huang et al., 2023]:
 - Exchangeable and differentiable topology-aware loss on the calibration node data
 - Minimize the size of the prediction set while maintaining coverage
- Conformal line-graph inference:
 - Will not scale to larger graphs
 - Ambiguity about edge features

- Motivation
- Problem Formulation
- Our Approach
- Experiments
- Conclusion

Problem Formulation

Given:

Training Data: $D_{\text{train}} = (\mathcal{V}, \mathcal{E}, \mathcal{X}, \mathcal{Y}_{\text{train}})$ Calibration Data: $D_{\text{cal}} = (\mathcal{V}, \mathcal{E}, \mathcal{X}, \mathcal{Y}_{\text{cal}})$

Estimate:

Testing Data: $D_{\text{test}} = (\mathcal{V}, \mathcal{E}, \mathcal{X}, \mathcal{Y}_{\text{test}})$

Prediction set $\begin{bmatrix} \hat{y}_{6,2} \\ -\epsilon & +\epsilon \end{bmatrix}$

Challenges

- Trivially predict infinitely large bands
 Smallest possible band
- Trivially predict very small bands
 - Given a significance level (α), true labels of test point present (1 – α)% of time

University of lowa

- Motivation
- Problem Formulation
- Our Approach
- Experiments
- Conclusion

Overview of Conformal Inference (Vanilla CP)

- Split the data D into training (D_{train}) and calibration fold (D_{cal})
- Train a base ML model *f*(.) using (*D*_{train})
- For each edge (i,j) with weight y_{i,j} in E_{cal}:
 - Compute the Non-Conformity (NC) Score V(X_i, X_j, y_{i,j}) by some normbased score (like MSE)
- Calculate the $\hat{q}_{1-\alpha}$ of the NC score distribution
- For a test edge (i,j) with node features (X_i, X_j) , return prediction band $\hat{C}(\hat{y}_{i,j}) \leq \hat{q}_{1-\alpha}$

Our Idea- Edge-CP

- Instead of computing the NC score on the edge space, compute the score on the node latent space
- Find a way to translate the node NC score to the edge space
- We will need a proxy of true node label on the node feature space (surrogate node embedding)

Our Approach

- Obtain surrogate node embeddings
- Compute the binary operator function h(.)

Prediction Set for Test Edge

- Define a Band Estimator to translate the node feature NC score to edge space
- We use Neural Network Robustness Certification Methods like:
 - IBP^[1]
 - CROWN^[2]

[1] Gowal, Sven, et al. "On the effectiveness of interval bound propagation for training verifiably robust models." arXiv preprint arXiv:1810.12715 (2018). [2] Zhang, Huan, et al. "Efficient neural network robustness certification with general activation functions." *Advances in neural information processing systems* 31 (2018).

Effectiveness of Edge-CP

Lemma: If the node latent feature space satisfies the properties:

- The loss of information for Edge-CP in node space is bounded by the information obtained in the edge space
- The Band Estimation expands the differences between individual length and their quantiles
- Given a calibration set, the quantile of the band length is stable in both feature space and output space

Then Edge-CP provably outperforms Vanilla CP with shorter predictive band length

- Motivation
- Problem Formulation
- Our Approach
- Experiments
- Conclusion

Datasets

- Human Protein-Protein Physical Interaction Network (HS-PI): Biological protein-protein interaction dataset
- Astrophysics Collaboration Network (astro-ph): Collaboration network of scientists on the astrophysics archive during 1995-1999
- Condensed-Matter Physics Collaboration Network (condmat): Collaboration network of scientists on the condensed matter archive during 1995-1999
- Benzodiazepine Receptor (BZR) Network (BZR-MD): Interactions between 405 ligands of the Benzodiazepine Receptor (BZR)

Name	 V	Ē	Label Range
HS-PI	17,849	633,460	(1.77-4.90)
cond-mat	16,264	47,594	(0.05-22.33)
astro-ph	16,046	121,251	(0.01-16.50)
BZR-MD	6,520	137,734	(1.14-16.64)

Performance Metrics

- Effectiveness: Empirical probability that a test point falls into the predicted confidence band. We expect that the prediction sets will cover (1-α)% of the true test levels for a given significance level α
- Efficiency: Average length of the prediction sets. Lower efficiency is better
- Size Stratified Coverage (SSC): Proportion of prediction sets containing the true label, stratified by prediction set size, to assess calibration across different confidence levels. We want it to be close to (1-α)%

Results- Conditional Coverage

- Motivation
- Problem Formulation
- Our Approach
- Experiments
- Conclusion

Conclusion

- Edge-CP extends conformal inference in GNNs to weighted edge prediction tasks
- Edge-CP leverages the latent node embeddings to construct a NC score
- Edge-CP outperforms all baselines
- Future Directions:
 - Explore the validity of this method in higher-order interaction structures like hypergraphs
 - Extend the coverage guarantee to locally valid coverage

Thank You

Contact: akash-choudhuri@uiowa.edu

24