Domain Knowledge Augmented Contrastive Learning on Dynamic Hypergraphs for Improved Health Risk Prediction

Akash Choudhuri, Hieu Vu, Kishlay Jha, Bijaya Adhikari

University of Iowa

Overview

- Motivation
- Problem Formulation
- Our Approach
- Experiments
- Conclusion

Patient Risks in Hospitals

- In 2022, there were 6,120 hospitals in the US with 33,679,935 admissions^[1]
- Patients admitted to hospitals have several risks:
 - Risk of getting Healthcare Associated Infections (HAIs)
 - Risk of Medication/ diagnosis errors
 - Risk of worsening physical health leading to admission in critical care units
- This risks sometimes even lead to death!

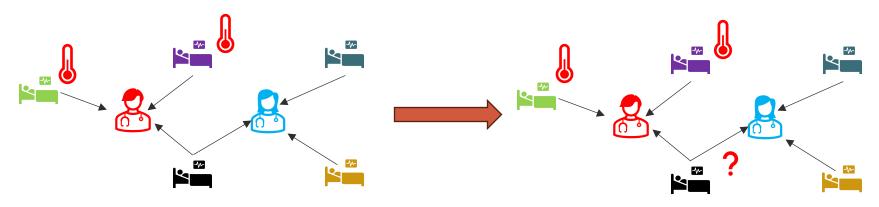
How big are the costs?

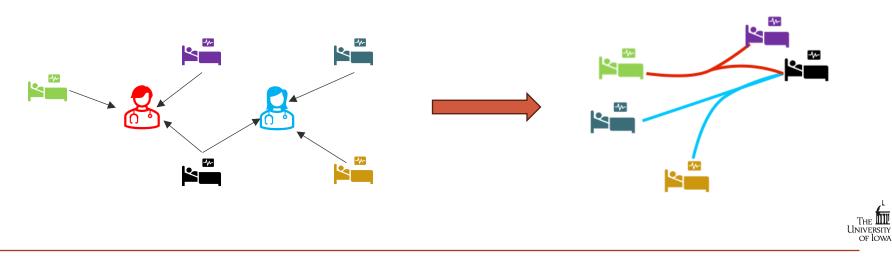
- Patient risks are costly:
 - About 4% of patients in the US are diagnosed with an infection during their hospitalization^[1]
 - ICU costs per day in 2010 were estimated to be \$4300, a 61% increase since the 2000 cost per day of \$2669^[2]
- In the 2021 annual report published by CDC^[3], acute care hospitals in USA have:
 - 14% increase in MRSA cases
 - 12% increase in ventilator-associated events
 - **11%** increase in surgical site infections following abdominal hysterectomy
- Forecasting these risks before they take place is crucial to prevent them

[3] https://www.aha.org/news/headline/2022-11-11-cdc-reports-increase-certain-health-care-associated-infections-2021

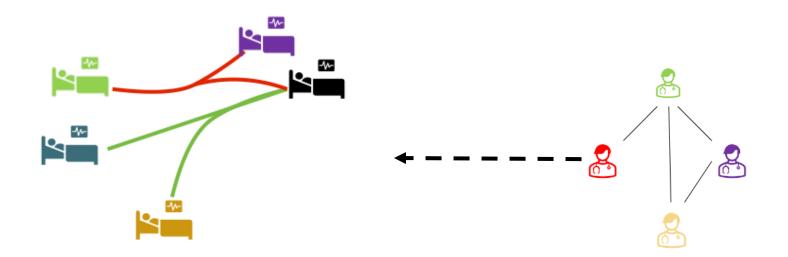
 ^[1] Magill, Shelley S., et al. "Multistate point-prevalence survey of health care-associated infections." New England Journal of Medicine 370.13 (2014): 1198-1208.
[2] https://sccm.org/communications/critical-care-statistics

Interactions are helpful for Risk Estimation





Incorporating Domain Knowledge



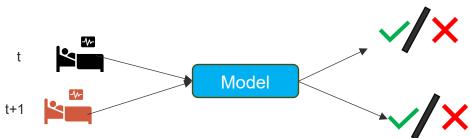
Overview

- Motivation
- Problem Formulation
- Our Approach
- Experiments
- Conclusion

Problem Formulation



Learn:



Such That:

A loss function is minimized:

- Across all labeled patients
- Across training timestamps

Challenges

- Missing Data
 - Interaction data is granular
 - Need for robust method
- Alignment to domain knowledge
- Temporal dependencies
 - · Patient risk evolves over time
 - The effects of certain interactions are visible later



Existing Works

- Clinical Literature:
 - Do not account for high-order interactions^[1]
 - Do not use contact-based interactions [2,3]
- ML Methods:^[4]
 - Randomly deletes interaction patterns for contrastive augmentations
 - Introduces harmful noise

[2] Xu, Ran, et al. "Hypergraph transformers for ehr-based clinical predictions." AMIA Summits on Translational Science Proceedings 2023 (2023): 582.

[3] Xu, Ran, et al. "Counterfactual and factual reasoning over hypergraphs for interpretable clinical predictions on ehr." Machine Learning for Health. PMLR, 2022.

[4] Ma, Tianyi, et al. "Hypergraph contrastive learning for drug trafficking community detection." 2023 IEEE International Conference on Data Mining (ICDM). IEEE, 2023.

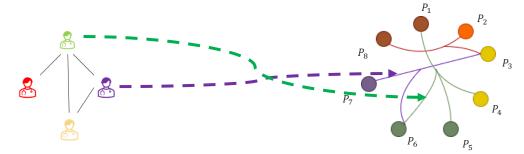
^[1] Oh, Jeeheh, et al. "A generalizable, data-driven approach to predict daily risk of Clostridium difficile infection at two large academic health centers." infection control & hospital epidemiology 39.4 (2018): 425-433.

Overview

- Motivation
- Problem Formulation
- Our Approach
- Experiments
- Conclusion

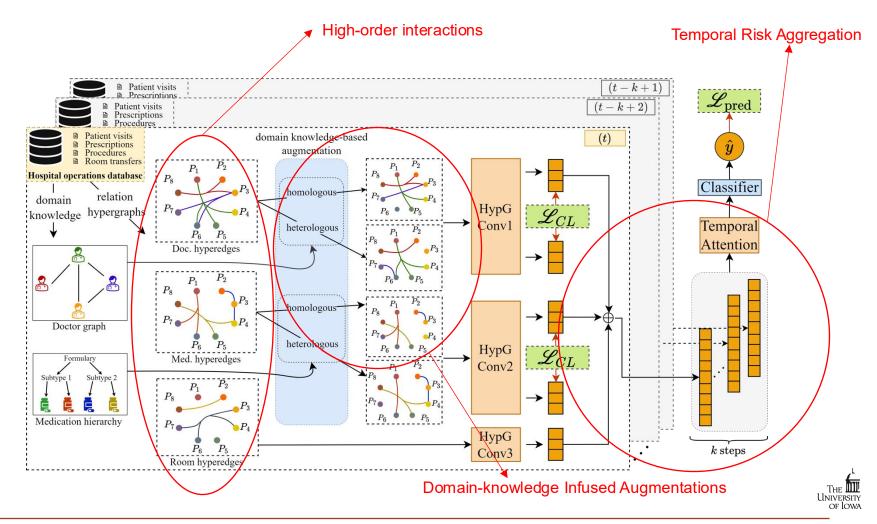
Our Ideas

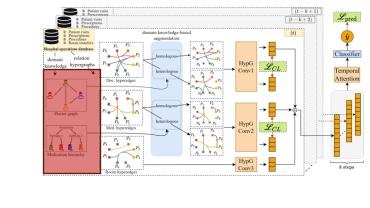
• Domain-Knowledge Infused Augmentations



• Temporal Aggregation of Risk

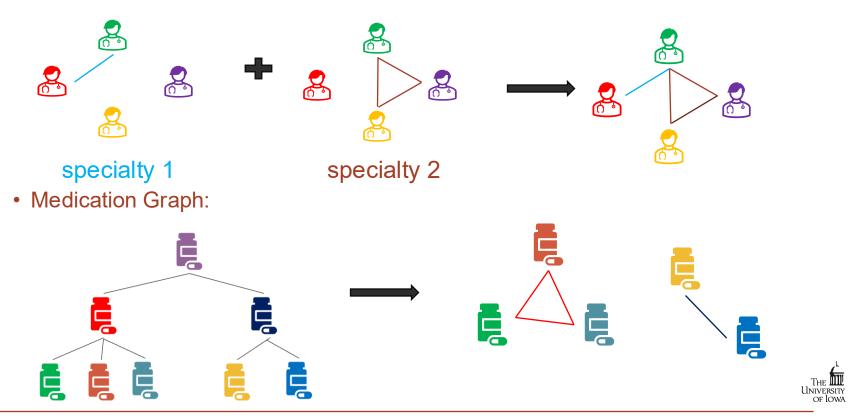
Our Approach: Overview

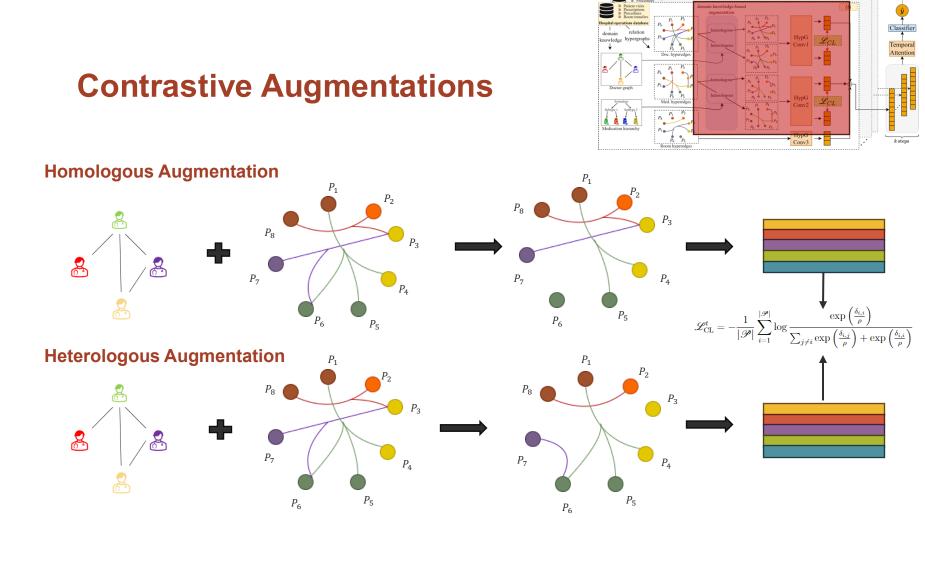




Domain Graph Construction

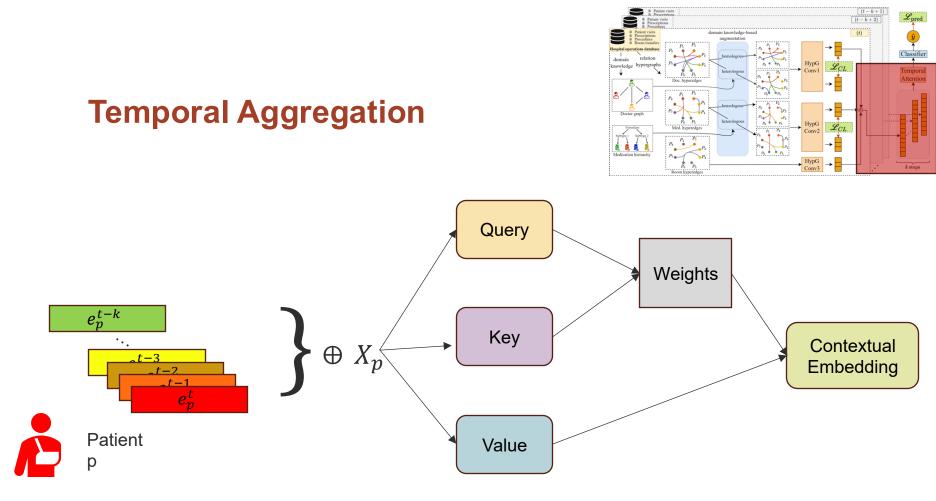
• Doctor Graph:





(t - k + 1)(t - k + 2)

 $\mathscr{L}_{\mathrm{pred}}$



Person Perso

- After obtaining temporal embedding for each patient, predicted label \hat{y} is obtained by passing it through a Feed-Forward Layer
- For each binary prediction label, the loss is:

Training

$$\mathcal{L}_{\text{pred}}^{t} = -[y_{p}^{t} \log(\hat{y}_{p}^{t}) + (1 - y_{p}^{t}) \log(1 - \hat{y}_{p}^{t})]$$

- The overall objective function to be minimized over training timestamps $\boldsymbol{\tau}$ is:

$$\mathcal{L} = \sum_{t \in \tau} (\gamma \mathcal{L}_{CL}^t + (1 - \gamma) \mathcal{L}_{\text{pred}}^t)$$

 We used Adaptive Moment Estimation Optimization (ADAM) algorithm for optimization

Overview

- Motivation
- Problem Formulation
- Our Approach
- Experiments
- Conclusion

Data

- Hospital Operations Data was obtained from:
 - The University of Iowa Hospitals and Clinics (UIHC)
 - Beth Israel Deaconess Medical Center (MIMIC-IV)
- The resultant patient-hospital interaction data statistics are:

Interaction Type	UIHC	MIMIC-IV
Patient-Doctor/HCW	23,085	8,046
Patient- Medication	349,345	34,857
Patient-Room/Unit	16,771	3,334

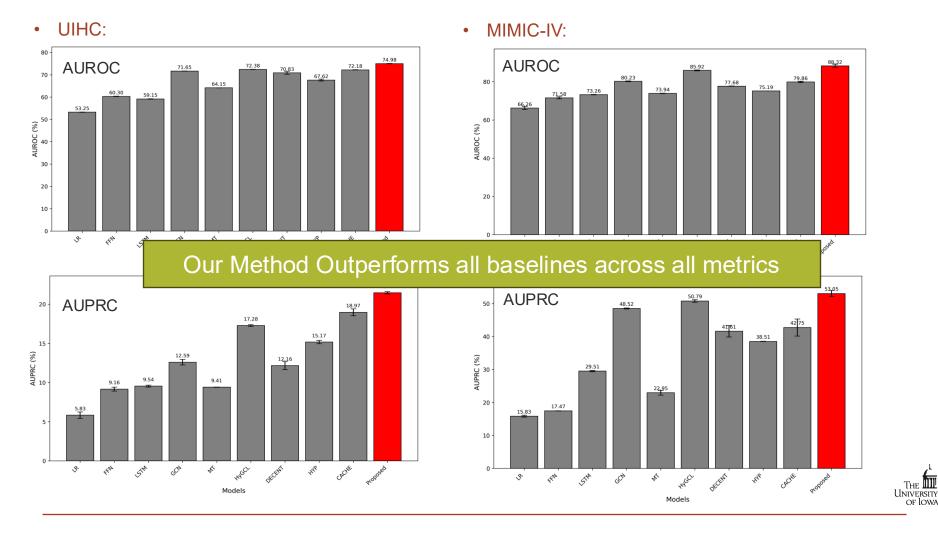
• Tasks:

- CDI Incidence Prediction
- MICU Transfer Prediction

CDI Incidence Prediction

- Clostridioides difficile infection (CDI) is a common HAI, increasing the mortality risk of patients with weakened immune systems
- Binary Classification Problem:
 - Instance: Patient at time *t* and features at that time
 - Label: Binary indicator of getting infection in next 3 days^[1]
- Evaluation Metric:
 - ROC-AUC Score
 - AUPRC Score
- Averaged across 3 independent runs

Results: CDI Incidence Prediction



OF IOWA

MICU Transfer Prediction

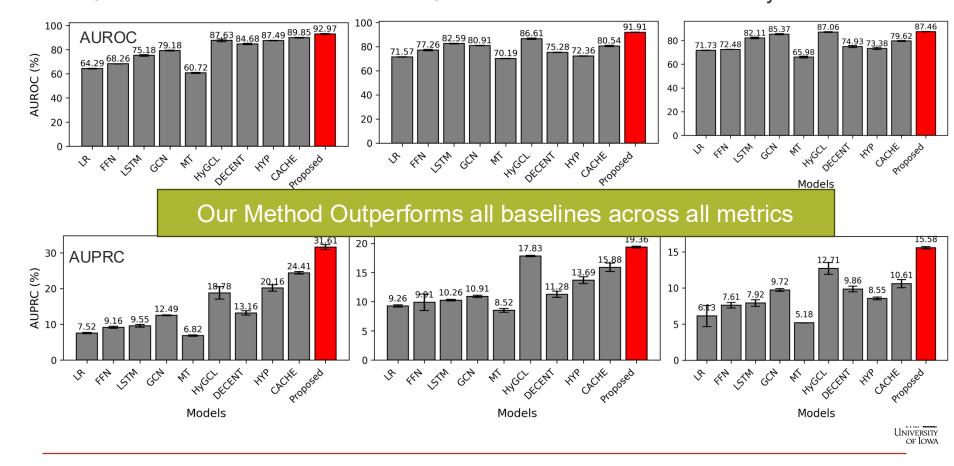
- Forecast whether a patient is at risk of transfer to a Medical Intensive Care Unit (MICU)
- Binary Classification Problem:
 - Instance: Patient at time *t* and features at that time
 - Label: Binary indicator of MICU transfer in the next k days
- Evaluation Metric:
 - ROC-AUC Score
 - AUPRC Score
- Averaged across 3 independent runs

MICU Transfer: UIHC

• 1- day ahead

2- day ahead

• 3- day ahead

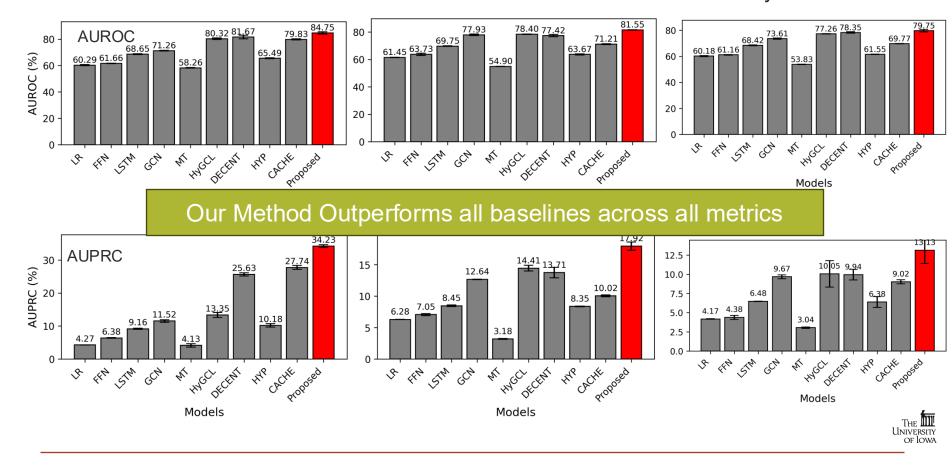


MICU Transfer: MIMIC-IV

• 1- day ahead

2- day ahead

• 3- day ahead



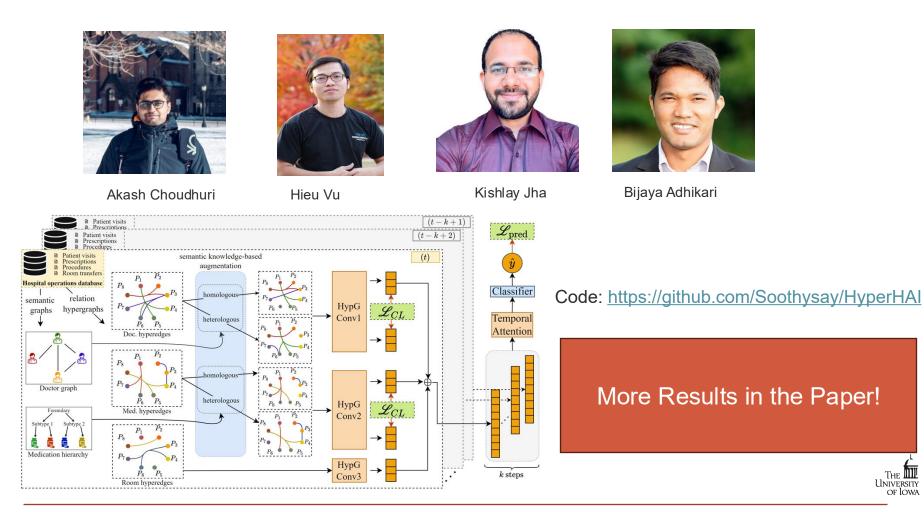
Overview

- Motivation
- Problem Formulation
- Our Approach
- Experiments
- Conclusion

Conclusion

- Leveraging high-order spatio-temporal mobility interactions is an effective way to estimate patient risk when prior visit information is unavailable. We use:
 - Patient-HCW/Doctor interaction
 - Patient-Medication interaction
 - Patient-Room interaction
- To exploit the domain information and account for missing interaction data, we propose a new hypergraph contrastive augmentation strategy that is aligned with domain information
- We evaluate the performance of the learned embeddings over the predictive tasks:
 - CDI Incidence Prediction
 - Short and Long Term MICU Transfer Prediction
- Our proposed model outperforms state-of-the-art baselines across both tasks

Thank You



The UNIVERSITY OF LOWA