Continually-Adaptive Representation Learning Framework for Time-Sensitive Healthcare Applications

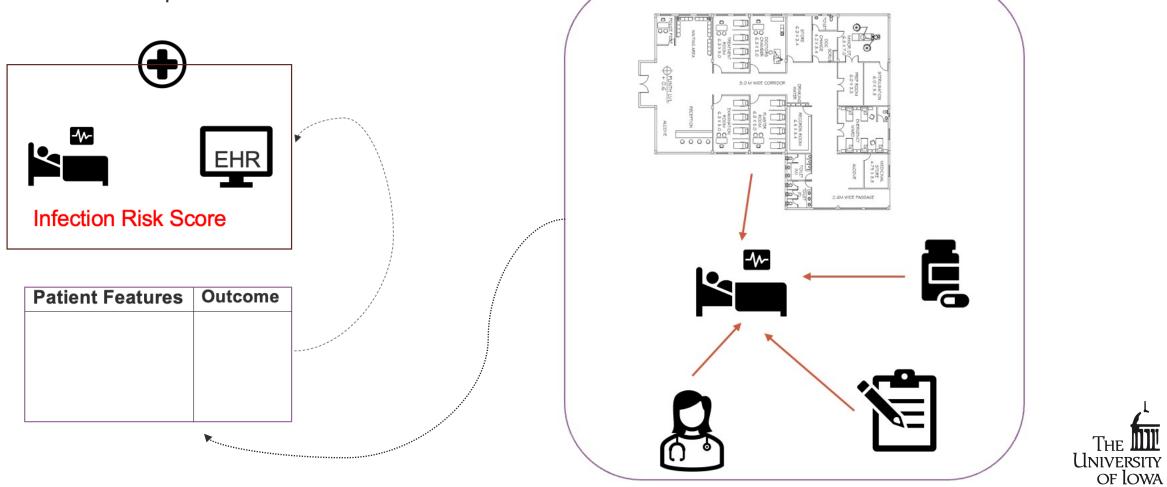
Akash Choudhuri, Hankyu Jang, Alberto M. Segre, Philip M. Polgreen, Kishlay Jha, Bijaya Adhikari

University of Iowa

Funded by CDC MInD Healthcare Network Grant

Motivation 1: Learning representations of Patients

Motivations and Principle



Motivation 2: Incremental Incorporation of New Information

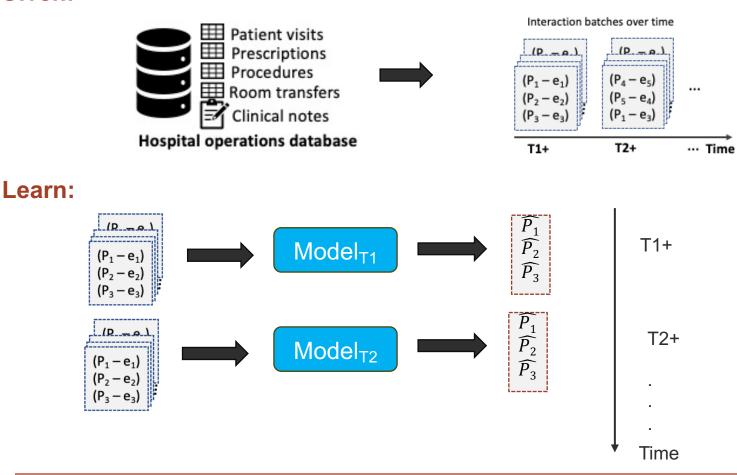
Motivations and Principle

Faster Training!

Problem Formulation

Model and Components

Given:

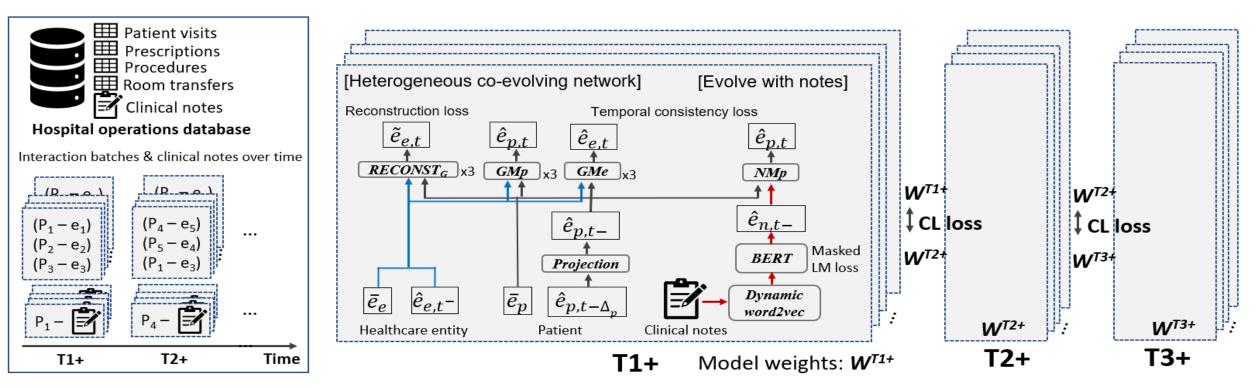


Such That:

- Dynamic patient embeddings encodes information to aid predictions
- The model parameters across periods doesn't drastically change

Model Architecture

Model and Components



General purpose, unsupervised and continually learning embedding method for dynamic heterogenous interactions

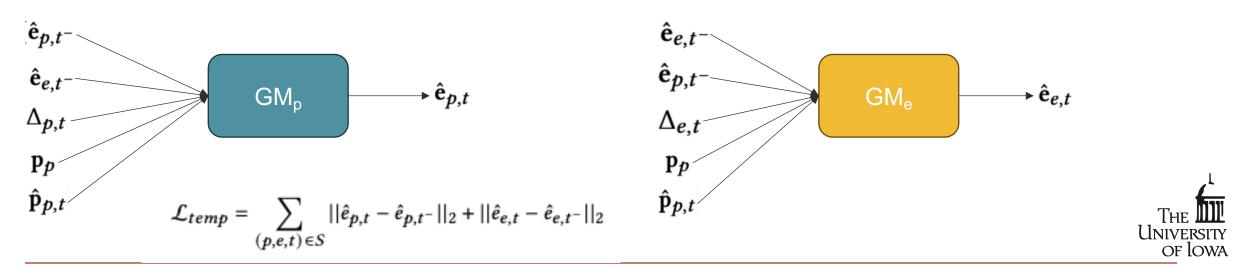
- Preserves information on the interaction via interaction type specific autoencoder
- Continually infuses knowledge across periods to prevent catastrophic forgetting

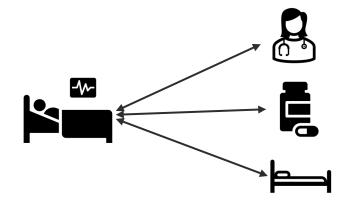
Dynamic Embedding Update

Model and Components

• Projection of Patient embedding (from time $t - \Delta$ to t⁻) ^[1]:

- Update dynamic embeddings of patient and the entity at t via co-evolving neural networks:





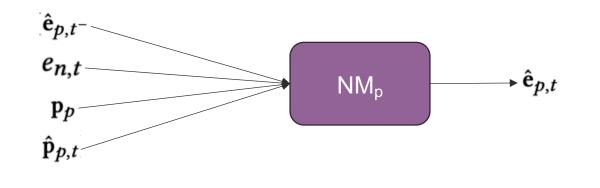
Evolution with Clinical Notes

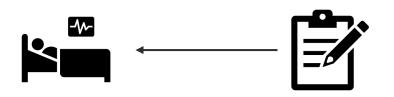
Model and Components

- Obtaining Clinical Note Embeddings
 - For each clinical note in a period, obtain learned word embeddings using DynamicWord2Vec^[1]
 - Use learned word vector embeddings to pre-train BERT^[2] on Masked Language Loss:

$$\mathcal{L}_{LM} = -\frac{1}{N} \sum_{i=1}^{N} [y_i \log(p_i) + (1 - y_i) \log(1 - p_i)]$$

Update Dynamic Patient embeddings:





Reconstruction and Continual Knowledge Infusion

Model and Components

 We reconstruct the original entity dynamic and static embeddings via a reconstruction autoencoder:
iê_{p,t}-

- For each period, we prevent 'catastrophic forgetting' across periods by:
 - Initializing model parameters for a new period with the learned model parameters from the previous period
 - Minimizing the Continual Learning loss:

$$\begin{array}{c|c} \mathsf{Model}_{\mathsf{T1}} & \approx & \mathsf{Model}_{\mathsf{T2}} & \approx & \mathsf{Model}_{\mathsf{T3}} & \dots \\ \\ \mathcal{L}_{CL} = \lambda ||\theta_i - \theta_{i-1}||_2 \end{array}$$

- Hospital Operations Data was obtained from University of Iowa Hospitals and Clinics (UIHC) data on:
 - Electronic Health Records
 - Admission- Discharge-Transfer (ADT) logs
- Hospital Operations was divided into 3 periods:

Period	Start Date	End Date	No. of D,M,R Interactions	No. of N Interactions
Period 1	5/4/2008	6/25/2008	245,043	149,685
Period 2	6/13/2008	8/7/2008	252,089	152,037
Period 3	7/10/2008	8/31/2008	257,994	163,158

• **Assumption:** No new entities are added across the periods

CDI Incidence Prediction

Results

- Clostridioides difficile infection (CDI) is one of a common HAI, increases mortality risk of patients with weakened immune system
- Binary Classification Problem:
 - Instance: Patient at time t and features at that time
 - Label: Binary indicator of getting infection in next 3 days^[1]
- Evaluation Metric: ROC-AUC Score
- 3- fold cross validation with 30 repetitions

Period	Method	LR	SVM	RF
Period 1	DOMAIN	0.49 ± 0.20	0.52 ± 0.07	0.34 ± 0.07
	JODIE	0.44 ± 0.12	0.36 ± 0.09	0.52 ± 0.03
	DECENT	0.62 ± 0.07	0.57 ± 0.01	0.61 ± 0.06
	Ours	$\textbf{0.65} \pm \textbf{0.05}$	$\textbf{0.60} \pm \textbf{0.04}$	$\textbf{0.73} \pm \textbf{0.07}$
Period 2	DOMAIN	0.60 ± 0.11	0.54 ± 0.13	0.76 ± 0.19
	JODIE	0.50 ± 0.05	0.47 ± 0.06	0.52 ± 0.18
	DECENT	0.71 ± 0.02	0.59 ± 0.16	0.77 ± 0.04
	Ours	$\textbf{0.74} \pm \textbf{0.08}$	$\textbf{0.62} \pm \textbf{0.06}$	$\textbf{0.78} \pm \textbf{0.19}$
Period 3	DOMAIN	0.67 ± 0.19	0.56 ± 0.09	0.71 ± 0.18
	JODIE	0.61 ± 0.08	0.55 ± 0.14	0.59 ± 0.03
	DECENT	0.68 ± 0.12	0.63 ± 0.04	0.71 ± 0.19
	Ours	$\textbf{0.69} \pm \textbf{0.14}$	0.66 ± 0.07	$\textbf{0.72} \pm \textbf{0.23}$

MICU Transfer Prediction

Results

- Forecast whether a patient is at risk of transfer to a Medical Intensive Care Unit (MICU)
- Binary Classification Problem:
 - Instance: Patient at time t and features at that time
 - Label: Binary indicator of MICU transfer in the next day
- Evaluation Metric: ROC-AUC Score
- 3- fold cross validation with 30 repetitions

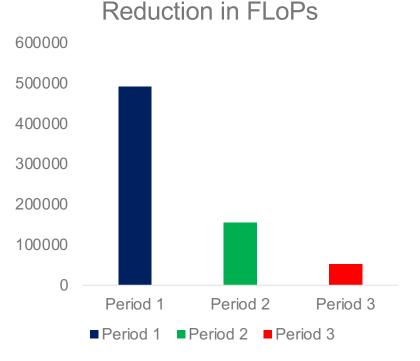
Period	Method	LR	SVM	RF
Period 1	DOMAIN	0.63 ± 0.20	0.52 ± 0.03	0.86 ± 0.13
	JODIE	0.54 ± 0.15	0.51 ± 0.02	0.66 ± 0.04
	DECENT	0.85 ± 0.07	0.71 ± 0.05	0.83 ± 0.05
	Ours	$\textbf{0.89} \pm \textbf{0.05}$	$\boldsymbol{0.77 \pm 0.08}$	$\textbf{0.87} \pm \textbf{0.03}$
Period 2	DOMAIN	0.68 ± 0.12	0.57 ± 0.13	0.71 ± 0.07
	JODIE	0.59 ± 0.05	0.52 ± 0.10	0.55 ± 0.01
	DECENT	0.72 ± 0.07	0.65 ± 0.10	0.86 ± 0.03
	Ours	$\textbf{0.76} \pm \textbf{0.02}$	$\boldsymbol{0.72 \pm 0.03}$	$\textbf{0.89} \pm \textbf{0.09}$
Period 3	DOMAIN	0.67 ± 0.13	0.56 ± 0.02	0.81 ± 0.03
	JODIE	0.61 ± 0.08	0.52 ± 0.18	0.62 ± 0.12
	DECENT	$\textbf{0.85} \pm \textbf{0.07}$	0.67 ± 0.01	$\textbf{0.87} \pm \textbf{0.18}$
	Ours	0.84 ± 0.12	0.71 ± 0.01	$\textbf{0.87} \pm \textbf{0.08}$

UNIVERSITY OF IOWA

Empirical Verification of Continual Adaptation

Results

- The model training is very resource intensive
- We used the continual learning formulation to reduce training time without costing too much on the quality of embeddings
- Our model will require more operations to train for the first period. But it will require much less operations to train on the data for the subsequent periods
- We validate this intuition by profiling the proxy of FLoPs (MACs) required to train the model to construct dynamic embeddings across periods
- Note that the number of FLoPs required to pre-train our BERT model is excluded from our analysis



OF IOWA

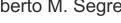
Conclusion

- The learned patient embeddings incorporate both the interactions and the clinical notes
- We use continual learning to reduce the time for training incoming heterogenous and dynamic batches of interactions and notes
- We evaluate the performance of the learned embeddings over the predictive tasks:
 - CDI Incidence Prediction
 - MICU Transfer Prediction
- Our proposed model outperforms state-of-the-art baselines across both the tasks
- Our continual learning formulation leads to faster training of model parameters in subsequent batches

Alberto M. Segre

Akash Choudhuri

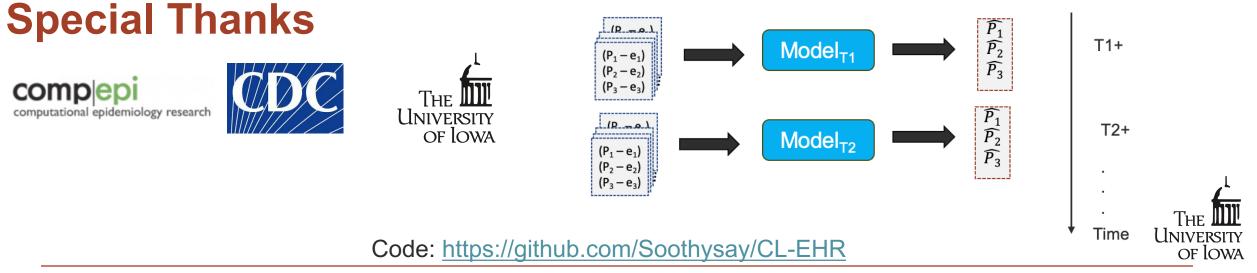
Hankyu Jang



Philip M. Polgreen

Kishlay Jha

Bijaya Adhikari



Contact: akash-choudhuri@uiowa.edu